Biophysical techniques

  • Usui, D. et al. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2. Biochem Biophys Res Commun. 490(4), 1205–1209 (2017). doi: 10.1016/j.bbrc.2017.06.183. https://www.ncbi.nlm.nih.gov/pubmed/28669727
  • Henry, K.A. et al. A disulfide-stabilized human VL single-domain antibody library is a source of soluble and highly thermostable binders. Mol Immunol. 190–196 (2017). doi: 10.1016/j.molimm.2017.07.006. https://www.ncbi.nlm.nih.gov/pubmed/28820969
  • Birch, J. et al. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins. Carbohydr Polym. 177, 406–414 (2017). doi: 0.1016/j.carbpol.2017.08.055. https://www.ncbi.nlm.nih.gov/pubmed/28962786
  • Wang, W. et al. Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance. Anal Biochem. 538, 53–63 (2017). doi: 10.1016/j.ab.2017.09.014. https://www.ncbi.nlm.nih.gov/pubmed/28947169
  • Seigner J, Zajc CU, Dötsch S, et al. Solving the mystery of the FMC63- CD19 affinity. Scientific Reports. 2023;13(1). doi:10.1038/s41598-023-48528-0
  • Ow SY, Kapp EA, Tomasetig V, et al. HDX-MS study on garadacimab binding to activated FXII reveals potential binding interfaces through differential solvent exposure. mAbs. 2023;15(1). doi:10.1080/194208 62.2022.2163459
  • Benicky J, Sanda M, Brnakova Kennedy Z, et al. PD-L1 Glycosylation and Its Impact on Binding to Clinical Antibodies. Journal of Proteome Research. 2020;20(1):485-497. doi:10.1021/acs.jproteome.0c00521
  • Kamat V, Boutot C, Rafique A, et al. High affinity human Fc specific monoclonal antibodies for capture kinetic analyses of antibodyantigen interactions. Analytical Biochemistry. 2021;640:114455-114455. doi:10.1016/j.ab.2021.114455
  • Frick R, Høydahl LS, Petersen J, et al. A high-affinity human TCR-like antibody detects celiac disease gluten peptide–MHC complexes and inhibits T cell activation. Science Immunology. 2021;6(62). doi:10.1126/sciimmunol.abg4925
  • Maxim, Mølck C, Henderson I, et al. Tralokinumab does not affect endogenous IL-13Rα2-mediated regulation of free IL-13. JID Innov. 2023;3(5):100214-100214. doi:10.1016/j.xjidi.2023.100214
  • Smith CR, Aranda R, Bobinski TP, et al. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP-Deleted Cancers. Journal of Medicinal Chemistry. 2022;65(3):1749-1766. doi:10.1021/acs.jmedchem.1c01900

Biotherapeutics

  • Shen, Y. et al. Preparation and characterization of a high-affinity monoclonal antibody against  human epididymisprotein-4. Protein Expr Purif. 141, 44–51 (2018). doi: 10.1016/j.pep.2017.09.005. www.ncbi.nlm.nih.gov/pubmed/28928083
  • Vincent, K. J. and, Zurini, M. Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates. Biotechnol J. 7 (12), 1444–50 (2012). doi: 10.1002/biot.201200250. https://www.ncbi.nlm.nih.gov/pubmed/23125076
  • Hearty, S. et al. Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol Biol. 907, 411–42 (2012). doi: 10.1007/978-1-61779-974-7_24. https://www.ncbi.nlm.nih.gov/pubmed/22907366
  • Schräml, M. and von Proff, L. Temperature-dependent antibody kinetics as a tool in antibody lead selection. Methods Mol Biol. 901,183–94 (2012). doi: 10.1007/978-1-61779-931-0_12. https://www.ncbi.nlm.nih.gov/pubmed/22723102
  • Schräml, M. and Biehl, M. Kinetic screening in the antibody development process. Methods Mol Biol. 901,171-81 (2012). doi: 10.1007/978-1-61779-931-0_11. https://www.ncbi.nlm.nih.gov/pubmed/22723101
  • Kamat, V. and Rafique, A. Extending the throughput of Biacore 4000 biosensor to accelerate kinetic analysis of antibody-antigen interaction. Anal Biochem. 530, 75-86 (2017). doi: 10.1016/j.ab.2017.04.020. https://www.ncbi.nlm.nih.gov/pubmed/28465032
  • Katsamba, P.S. Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal Biochem. 352(2), 208-21 (2006). https://www.ncbi.nlm.nih.gov/pubmed/16564019
  • Usui, D. et al. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2. Biochem Biophys Res Commun. 490(4):1205-1209 (2017). doi: 10.1016/j.bbrc.2017.06.183. https://www.ncbi.nlm.nih.gov/pubmed/28669727
  • Emenike Kenechi Onyido, James D, Jezabel Garcia-Parra, et al. Elucidating Novel Targets for Ovarian Cancer Antibody–Drug Conjugate Development: Integrating In Silico Prediction and Surface Plasmon Resonance to Identify Targets with Enhanced Antibody Internalization Capacity. Antibodies. 2023;12(4):65-65. doi:10.3390/antib12040065
  • Gassner, C. Development and validation of a novel SPR-based assay principle for bispecific molecules. J Pharm Biomed Anal. 102, 144-9 ((2014). doi: 10.1016/j.jpba.2014.09.007. https://www.ncbi.nlm.nih.gov/pubmed/25277666
  • Stubenrauch, K. et al. An immunodepletion procedure advances free angiopoietin-2 determination in human plasma samples during anti-cancer therapy with bispecific anti-Ang2/VEGF CrossMab. J Pharm Biomed Anal. 102, 459-67 (2015). doi: 10.1016/j.jpba.2014.10.005. https://www.ncbi.nlm.nih.gov/pubmed/25459946
  • Rauscher, A. et al. Influence of pegylation and hapten location at the surface of radiolabeled liposomes on tumour immunotargeting using bispecific antibody. Nucl Med Biol. Suppl, e66–74 (2014). doi: 10.1016/j.nucmedbio.2013.12.012. https://www.ncbi.nlm.nih.gov/pubmed/24485990
  • Castoldi, R. et al. Molecular characterization of novel trispecific ErbB-cMet-IGF1R antibodies and their antigen-binding properties. Protein Eng Des Sel. 25 (10):551-9 (2012). https://www.ncbi.nlm.nih.gov/pubmed/22936109
  • Bostrom, J. et al. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity. PLoS One. 6(4), e17887 (2011). doi: 10.1371/journal.pone.0017887. https://www.ncbi.nlm.nih.gov/pubmed/21526167
  • Meschendoerfer, W. et al. SPR-based assays enable the full functional analysis of bispecific molecules. J Pharm Biomed Anal. 132, 141-147 (2017). doi: 10.1016/j.jpba.2016.09.028. https://www.ncbi.nlm.nih.gov/pubmed/27721070
  • Bennett NR, Watson JL, Ragotte RJ, et al. Atomically accurate de novo design of single-domain antibodies. bioRxiv (Cold Spring Harbor Laboratory). Published online March 18, 2024. doi:10.1101/2024.03.14.585103
  • Lunn-Halbert MC, Laszlo GS, Erraiss S, et al. Preclinical Characterization of the Anti-Leukemia Activity of the CD33/CD16a/NKG2D Immune-Modulating TriNKET® CC-96191. Cancers. 2024;16(5):877.
    doi:https://doi.org/10.3390/cancers16050877
  • Laurent Larivière, Julia Eva Krüger, Thomas von Hirschheydt, et al. End-to-end approach for the characterization and control of product-related impurities in T cell bispecific antibody preparations. International Journal of Pharmaceutics X. 2023;5:100157-100157. doi:10.1016/j.ijpx.2023.100157
  • Rossotti MA, van Faassen H, Tran AT, et al. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Communications Biology. 2022;5(1):1-19. doi10.1038/s42003-022-03866-z
  • Ma X, Leon B, Ornelas E, et al. Structural and biophysical comparisons of the pomalidomide- and CC-220-induced interactions of SALL4 with cereblon. Scientific reports. 2023;13(1). doi:10.1038/s41598-023-48606-3
  • Wurz RP, Rui H, Dellamaggiore K, et al. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nature Communications. 2023;14(1). doi:10.1038/s41467-023-39904-5
  • Roy MJ, Winkler S, Hughes SJ, et al. SPR-Measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate. ACS Chemical Biology. 2019;14(3):361-368. doi:10.1021/acschembio.9b00092
  • Kofink C, Trainor N, Mair B, et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nature Communications. 2022;13(1):5969. doi: 10.1038/s41467-022-33430-6Epitope analysis
  • Lin, J. C. et al. Six amino acid residues in a 1200 Å2 interface mediate binding of factor VIII to an IgG4κ inhibitory antibody. PLoS One. 10(1), e0116577 (2015). doi: 10.1371/journal.pone.0116577. https://www.ncbi.nlm.nih.gov/pubmed/25615825
  • Nguyen, P. C. et al. High-resolution mapping of epitopes on the C2 domain of factor VIII by analysis of point mutants using surface plasmon resonance. Blood. 123(17), 2732-9 (2014). doi: 10.1182/blood-2013-09-527275. https://www.ncbi.nlm.nih.gov/pubmed/24591205
  • Abdiche, Y.N. et al. Exploring blocking assays using Octet, ProteOn, and Biacore biosensors. Anal Biochem. 386(2), 172-80 (2009). doi: 10.1016/j.ab.2008.11.038. https://www.ncbi.nlm.nih.gov/pubmed/19111520
  • Abdiche, Y.N. et al. Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci. 17(8), 1326-35 (2008). doi: 10.1110/ps.035402.108. https://www.ncbi.nlm.nih.gov/pubmed/18505735
  • Abdiche, Y.N. et al. Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another. PLoS One. 12(1), e0169535 (2017). doi: 10.1371/journal.pone.0169535. https://www.ncbi.nlm.nih.gov/pubmed/28060885
  • Schüchner S, Behm C, Mudrak I, Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Science Signaling. 2020;13(616):eaax9730. doi:10.1126/scisignal.aax9730
  • Heinrich, L. et al. Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J Immunol Methods. 352(1-2), 13-22 (2010). doi: 10.1016/j.jim.2009.10.002. https://www.ncbi.nlm.nih.gov/pubmed/19854197
  • Sun, H. et al. Recombinant human IgG1 based Fc multimers, with limited FcR binding capacity, can effectively inhibit complement-mediated disease. J Autoimmun. 84, 97–108 (2017). doi: 10.1016/j.jaut.2017.08.004. https://www.ncbi.nlm.nih.gov/pubmed/28830653
  • Abdiche, Y. N. et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs. 7(2), 331-43 (2015). doi: 10.1080/19420862.2015.1008353. https://www.ncbi.nlm.nih.gov/pubmed/25658443
  • Stracke, J. et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs. 6(5), 1229-42 (2014). doi: 10.4161/mabs.29601. https://www.ncbi.nlm.nih.gov/pubmed/25517308
  • Gurbaxani, B. et al. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Mol Immunol. 56(4), 660-74 (2013). doi: 10.1016/j.molimm.2013.05.008. https://www.ncbi.nlm.nih.gov/pubmed/23917469
  • Kelley, R. F. and Meng, Y. G. Methods to engineer and identify IgG1 variants with improved FcRn binding or effector function. Methods Mol Biol. 901, 277-93 (2012). doi: 10.1007/978-1-61779-931-0_18. https://www.ncbi.nlm.nih.gov/pubmed/22723108
  • Leonard, P. et al. Rapid temperature-dependent antibody ranking using Biacore A100. Anal Biochem. 409(2), 290-2 (2011). doi: 10.1016/j.ab.2010.10.036. https://www.ncbi.nlm.nih.gov/pubmed/21050836
  • Steukers, M. et al. Rapid kinetic-based screening of human Fab fragments. J Immunol Methods. 310(1-2), 126-35 (2006). doi: 10.1016/j.jim.2006.01.002. https://www.ncbi.nlm.nih.gov/pubmed/16481004
  • Cooper, M. A. Label-free screening of bio-molecular interactions. Anal Bioanal Chem. 377(5), 834-42 (2003). doi: 10.1007/s00216-003-2111-y. https://www.ncbi.nlm.nih.gov/pubmed/12904946
  • Moscetti, I. et al. Binding kinetics of mutant p53R175H with wild type p53 and p63: A Surface Plasmon Resonance and Atomic Force Spectroscopy study. Biophys Chem. 228, 55-61 (2017). doi: 10.1016/j.bpc.2017.07.002. https://www.ncbi.nlm.nih.gov/pubmed/28697449
  • Igawa, T. et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 28(11), 1203-7 (2010). doi: 10.1038/nbt.1691. https://www.ncbi.nlm.nih.gov/pubmed/20953198
  • Fabini, E. and Danielson, U.H. Monitoring drug-serum protein interactions for early ADME prediction through Surface Plasmon Resonance technology. J Pharm Biomed Anal. 144, 188-194 (2017). doi: 10.1016/j.jpba.2017.03.054. https://www.ncbi.nlm.nih.gov/pubmed/28392047
  • Schuetz, D.A. et al. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today. 22(6) 896-911 (2017). doi: 10.1016/j.drudis.2017.02.002. https://www.ncbi.nlm.nih.gov/pubmed/28412474
  • Uitdehaag, J.C.M. et al. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity. J Mol Biol. 2017 429(14), 2211-2230. doi: 10.1016/j.jmb.2017.05.014. https://www.ncbi.nlm.nih.gov/pubmed/28539250
  • He C, Mansilla-Soto J, Nandish Khanra, et al. CD19 CAR antigen engagement mechanisms and affinity tuning. Science Immunology. 2023;8(81). doi:10.1126/sciimmunol.adf1426
  • Giardino Torchia ML, Gilbreth R, Merlino A, et al. Rational design of chimeric antigen receptor T cells against glypican 3 decouples toxicity from therapeutic efficacy. Cytotherapy. 2022;24(7):720-732. doi:10.1016/j.jcyt.2022.03.008
  • Gutgsell AR, Gunnarsson A, Forssén P, Gordon E, Fornstedt T, Geschwindner S. Biosensor-Enabled Deconvolution of the Avidity-Induced Affinity Enhancement for the SARS-CoV-2 Spike Protein and ACE2 Interaction. Analytical Chemistry. 2021;94(2):1187-1194. doi:10.1021/acs.analchem.1c04372
  • Raghu D, Hamill P, Banaji A, McLaren A, Hsu YT. Assessment of the binding interactions of SARS-CoV-2 spike glycoprotein variants. Journal of Pharmaceutical Analysis. 2021;12(1):58-64. doi:10.1016/j. jpha.2021.09.006
  • Leach A, Ilca FT, Akbar Z, et al. A tetrameric ACE2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated potency. Antiviral Research. 2021;194:105147. doi:10.1016/j. antiviral.2021.105147
  • O'Hara, D.M. et al. Ligand binding assays in the 21st century laboratory: recommendations for characterization and supply of critical reagents. AAPS J. 14(2), 316-28 (2012). doi: 10.1208/s12248-012-9334-9. https://www.ncbi.nlm.nih.gov/pubmed/22415613
  • Staack, R.F. et al. Quality requirements for critical assay reagents used in bioanalysis of therapeutic proteins: what bioanalysts should know about their reagents. Bioanalysis. 3(5), 523-34 (2011). doi: 10.4155/bio.11.16. https://www.ncbi.nlm.nih.gov/pubmed/21388265
  • Rechlin, C. Price for Opening the Transient Specificity Pocket in Human Aldose Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and Computational Analysis. ACS Chem. Biol. 12 (5), 1397–1415 (2017). http://pubs.acs.org/doi/abs/10.1021/acschembio.7b00062
  • Karlsson, R. et al. Comparison of surface plasmon resonance binding curves for characterization of protein interactions and analysis of screening data. Anal Biochem. 502, 53-63 (2016). doi: 10.1016/j.ab.2016.03.007. https://www.ncbi.nlm.nih.gov/pubmed/27019155
  • Pol, E. et al. Evaluation of calibration-free concentration analysis provided by Biacore™ systems. Anal Biochem. 510, 88-97 (2016). doi: 10.1016/j.ab.2016.07.009. https://www.ncbi.nlm.nih.gov/pubmed/27402174
  • Federici, M. et al. Analytical lessons learned from selected therapeutic protein drug comparability studies. Biologicals. 41(3), 131-47 (2013). doi: 10.1016/j.biologicals.2012.10.001. https://www.ncbi.nlm.nih.gov/pubmed/23146362
  • Upton, R. et al. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action. Anal Chem. 88(20), 10259-10265 (2016). doi: 10.1021/acs.analchem.6b02994. https://www.ncbi.nlm.nih.gov/pubmed/27620140
  • Magnenat, L. et al. Demonstration of physicochemical and functional similarity between the proposed biosimilar adalimumab MSB11022 and Humira®. MAbs. 9(1), 127-139 (2017). doi: 10.1080/19420862.2016.1259046. https://www.ncbi.nlm.nih.gov/pubmed/27854156
  • Hofmann HP, Kronthaler U, Fritsch C, et al. Characterization and non-clinical assessment of the proposed etanercept biosimilar GP2015 with originator etanercept (Enbrel®). Expert Opinion on Biological Therapy. 2016;16(10):1185-1195. doi:10.1080/14712598.2016.1217329
  • Watanabe H, Hayashida N, Sato M, Honda S. Biosensing-based quality control monitoring of the higher-order structures of therapeutic antibody domains. Analytica Chimica Acta. 2024;1303:342439-342439. doi:10.1016/j.aca.2024.342439
  • Baubek Spanov, Olaleye O, Tomés Mesurado, et al. Pertuzumab Charge Variant Analysis and Complementarity-Determining Region Stability Assessment to Deamidation. Analytical Chemistry. 2023;95(8):3951-3958. doi:10.1021/acs.analchem.2c03275
  • Jovic M, Cymer F. Qualification of a surface plasmon resonance assay to determine binding of IgG-type antibodies to complement component C1q. Biologicals. 2019;61:76-79. doi:10.1016/j. biologicals.2019.08.004
  • Karlsson, R., et al. Surrogate potency assays: Comparison of binding profiles complements dose response curves for unambiguous assessment of relative potencies. J Pharm Anal. [Online] (21 December 2017. Posting date.)
  • Pol, E., Roos, H. et al. Evaluation of calibration-free concentration analysis provided by Biacore™ systems. Anal Biochem. 510, 88–97 (2016). doi: 10.1016/j.ab.2016.07.009. https://www.ncbi.nlm.nih.gov/pubmed/27402174
  • Visentin, J. et al. Calibration free concentration analysis by surface plasmon resonance in a capture mode. Talanta. 148, 478–85 (2016). doi: 10.1016/j.talanta.2015.11.025. https://www.ncbi.nlm.nih.gov/pubmed/26653475
  • Frostell, Å. Et al. Nine surface plasmon resonance assays for specific protein quantitation during cell culture and process development. Anal Biochem. 477, 1-9 (2015). doi: 10.1016/j.ab.2015.02.010. https://www.ncbi.nlm.nih.gov/pubmed/25700863
  • Karlsson, R. Biosensor binding data and its applicability to the determination of active concentration. Biophys Rev. 2016 8(4), 347-358 (2016). doi: 10.1007/s12551-016-0219-5. https://www.ncbi.nlm.nih.gov/pubmed/28510014
  • Dorion-Thibaudeau, J. et al. Quantification and simultaneous evaluation of the bioactivity of antibody produced in CHO cell culture-The use of the ectodomain of FcγRI and surface plasmon resonance-based biosensor. Mol Immunol. 2017 82, 46-49 (2017). doi: 10.1016/j.molimm.2016.12.017. https://www.ncbi.nlm.nih.gov/pubmed/28012362
  • Harvey IB, Chilewski SD, Devyani Bhosale, et al. Overcoming Lot-to-Lot Variability in Protein Activity Using Epitope-Specific Calibration-Free Concentration Analysis. Analytical Chemistry. 2024;96(16):6275-6281. doi:10.1021/acs.analchem.3c05607
  • Zhang P, Tu GH, Wei J, et al. Ligand-Blocking and Membrane-Proximal Domain Targeting Anti-OX40 Antibodies Mediate Potent T Cell-Stimulatory and Anti-Tumor Activity. Cell Reports. 2019;27(11):3117-3123.e5. doi:10.1016/j.celrep.2019.05.027
  • Shibata. H. et al. Comparison of different immunoassay methods to detect human anti-drug antibody using the WHO erythropoietin antibody reference panel for analytes. J Immunol Methods. 452, 73-77 (2018). doi: 10.1016/j.jim.2017.09.009. https://www.ncbi.nlm.nih.gov/pubmed/28970009
  • Gibbs, E. et al. Antibody dissociation rates are predictive of neutralizing antibody (NAb) course: a comparison of interferon beta-1b-treated Multiple Sclerosis (MS) patients with transient versus sustained NAbs. Clin Immunol. 157(1), 91-101 (2015). doi: 10.1016/j.clim.2014.12.005. https://www.ncbi.nlm.nih.gov/pubmed/25543089
  • Yu X, Orr CM, Chan C, et al. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature. 2023;614(7948):539-547. doi:10.1038/s41586-022-05673-2
  • Guidance for Industry: Clinical Pharmacology Data to Support a Demonstration of Biosimilarity to a Reference Product. U.S. Department of Health and human services/Food and drug Administration, (2014).
  • Guidance for Industry: Quality Considerations in Demonstrating Biosimilarity to a Reference Protein Product, U.S. Department of Health and human services/Food and drug Administration, (2012).
  • Guidance for Industry: Scientific Considerations in Demonstrating Biosimilarity to a Reference Product, U.S. Department of Health and human services/Food and drug Administration, (2012).
  • Kling, A. et al. Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science. 348(6239), 1106-12 (2015). doi: 10.1126/science.aaa4690. https://www.ncbi.nlm.nih.gov/pubmed/26045430
  • Müller, M. et al. c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett. 589(1), 45-51 (2015). doi: 10.1016/j.febslet.2014.11.022. https://www.ncbi.nlm.nih.gov/pubmed/25435171
  • Rechlin, C. et al. Price for Opening the Transient Specificity Pocket in Human Aldose Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and Computational Analysis. ACS Chem Biol. 12(5), 1397-1415 (2017). doi: 10.1021/acschembio.7b00062. https://www.ncbi.nlm.nih.gov/pubmed/28287700
  • Dobrovodský D, Primo CD. Do conformational changes contribute to the surface plasmon resonance signal? Biosensors and Bioelectronics. 2023;232:115296-115296. doi:10.1016/j.bios.2023.115296
  • Cook AD, Carrington M, Higgins MK. Molecular mechanism of complement inhibition by the trypanosome receptor ISG65. eLife. 2023;12. doi:10.7554/elife.88960
  • Miller PG, Sathappa M, Moroco JA, et al. Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nature Communications. 2022;13(1). doi:10.1038/s41467-022-30463-9
  • Chang W, Altman MD, Lesburg CA, et al. Discovery of MK-1454: A Potent Cyclic Dinucleotide Stimulator of Interferon Genes Agonist for the Treatment of Cancer. Journal of Medicinal Chemistry. 2022;65(7):5675-5689. doi:10.1021/acs.jmedchem.1c02197
  • Rollins, M.F. et al. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res. 43(4), 2216-22 (2015). doi: 10.1093/nar/gkv094. https://www.ncbi.nlm.nih.gov/pubmed/25662606
  • Groothuizen, F.S. et al. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res. 41(17), 8166-81 (2013). doi: 10.1093/nar/gkt582. https://www.ncbi.nlm.nih.gov/pubmed/23821665
  • Bruekner SR, Pieters W, Fish A, et al. Unexpected moves: a conformational change in MutSα enables high-affinity DNA mismatch binding. Nucleic Acids Research. 2023;51(3):1173-1188. doi:10.1093/nar/gkad015
  • Vaidyanathan VG, Xu L, Cho BP. Binary and Ternary Binding Affinities between Exonuclease-Deficient Klenow Fragment (Kf-exo–) and Various Arylamine DNA Lesions Characterized by Surface Plasmon Resonance. Chemical Research in Toxicology. 2012;25(8):1568-1570. doi:10.1021/tx300289d

Membrane proteins

  • Patching, S.G. Surface plasmon resonance spectroscopy for characterization of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta. 1838(1 Pt A), 43-55 (2014). doi: 10.1016/j.bbamem.2013.04.028. https://www.ncbi.nlm.nih.gov/pubmed/23665295
  • Chu, R. et al. Capture-stabilize approach for membrane protein SPR assays. Sci Rep. 2014 4, 7360. doi: 10.1038/srep07360. https://www.ncbi.nlm.nih.gov/pubmed/25484112
  • Bocquet, N. et al. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim Biophys Acta. 1848(5), 1224-33 (2015). doi: 10.1016/j.bbamem.2015.02.014. https://www.ncbi.nlm.nih.gov/pubmed/25725488
  • Adamson, R.J. and Watts, A. Kinetics of the early events of GPCR signaling. FEBS Lett. 588(24), 4701-7 (2014). doi: 10.1016/j.febslet.2014.10.043. https://www.ncbi.nlm.nih.gov/pubmed/25447525
  • Harding, P.J. et al. Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur Biophys J. 2006 35(8), 709-12 (2006). doi: 10.1007/s00249-006-0070-x. https://www.ncbi.nlm.nih.gov/pubmed/16708210
  • Schillinger, A.S. et al. Two homologous neutrophil serine proteases bind to POPC vesicles with different affinities: When aromatic amino acids matter. Biochim Biophys Acta. 1838(12), 3191-202 (2014). doi: 10.1016/j.bbamem.2014.09.003. https://www.ncbi.nlm.nih.gov/pubmed/25218402
  • Ogura, T. et al. Whole cell-based surface plasmon resonance measurement to assess binding of anti-TNF agents to transmembrane target. Anal Biochem. 2016 508, 73-7 (2016). doi: 10.1016/j.ab.2016.06.021. https://www.ncbi.nlm.nih.gov/pubmed/27349512
  • Bonvicini G, Singh SB, Nygren P, et al. Comparing in vitro affinity measurements of antibodies to TfR1: Surface plasmon resonance versus on-cell affinity. Analytical Biochemistry. 2023;686:115406-115406. doi:10.1016/j.ab.2023.115406
  • Shepherd CE, Robinson SM, Berizzi A, et al. Surface Plasmon Resonance Screening to Identify Active and Selective Adenosine Receptor Binding Fragments. ACS Med Chem Lett. 2022;13(7):1172-1181. doi:10.1021/acsmedchemlett.2c00099
  • Chu R, Reczek D, Brondyk W. Capture-stabilize approach for membrane protein SPR assays. Scientific Reports. 2014;4(1).
    doi:10.1038/srep07360
  • Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA Advances. 2021;1:100022-100022. doi:10.1016/j. bbadva.2021.100022

Vaccines

  • Hearty, S. et al. Surface Plasmon Resonance for Vaccine Design and Efficacy Studies: Recent Applications and Future Trends. Expert Rev Vaccines. 2010 9(6), 645-64 (2010). https://www.ncbi.nlm.nih.gov/pubmed/20518719
  • Van Regenmortel, M.H. Binding measurements as surrogate biological assays: surface plasmon resonance biosensors for characterizing vaccine components. Dev Biol (Basel). 2000;103, 69-74 (2000). https://www.ncbi.nlm.nih.gov/pubmed/11214255
  • Dai, L. et al. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe. 2016 19(5), 696-704. doi: 10.1016/j.chom.2016.04.013. https://www.ncbi.nlm.nih.gov/pubmed/27158114
  • Pissani, F. et al. Improvement of antibody responses by HIV envelope DNA and protein co-immunization. Vaccine. 32(4), 507-13 (2014). doi: 10.1016/j.vaccine.2013.11.022. https://www.ncbi.nlm.nih.gov/pubmed/24280279
  • Lahoud, M.H. et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci U S A. 109(40), 16270-5 (2012). doi: 10.1073/pnas.1208796109. https://www.ncbi.nlm.nih.gov/pubmed/22988114
  • Kovacs, J.M. et al. HIV-1 envelope trimer  elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci U S A. 109(30), 12111-6 (2012). doi: 10.1073/pnas.1204533109. https://www.ncbi.nlm.nih.gov/pubmed/22773820
  • Malito, E. et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. 109(14), 5229-34 (2012). doi: 10.1073/pnas.1201964109. https://www.ncbi.nlm.nih.gov/pubmed/22431623
  • Lee, H. et al. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res. 139 49-58 (2017). doi: 10.1016/j.antiviral.2016.12.016. https://www.ncbi.nlm.nih.gov/pubmed/28034741
  • Hein S, Mhedhbi I, Zahn T, et al. Quantitative and Qualitative Difference in Antibody Response against Omicron and Ancestral SARS-CoV-2 after Third and Fourth Vaccination. Vaccines. 2022;10(5):796. doi:10.3390/vaccines10050796
  • Baker AT, Boyd RJ, Sarkar D, et al. ChAdOx1 interacts with CA and PF4 with implications for thrombosis with thrombocytopenia syndrome. Science Advances. 2021;7(49). doi:10.1126/sciadv.abl8213
  • Manin, C. et al. Method for the simultaneous assay of the different poliovirus types using surface plasmon resonance technology. Vaccine. 31(7), 1034-9. (2013). doi: 10.1016/j.vaccine.2012.12.046. https://www.ncbi.nlm.nih.gov/pubmed/23277095
  • Towne, V. et al. Pairwise antibody footprinting using surface plasmon resonance technology to characterize human papillomavirus type 16 virus-like particles with direct anti-HPV antibody immobilization. J Immunol Methods. 2013 388(1-2), 1-7 (2013). doi: 10.1016/j.jim.2012.11.005. https://www.ncbi.nlm.nih.gov/pubmed/23159495
  • Mulder, A.M. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLoS One. 7(4), e33235 (2012). doi: 10.1371/journal.pone.0033235. https://www.ncbi.nlm.nih.gov/pubmed/22493667
  • Westdijk, J. et al. Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines. Vaccine. 29(18), 3390–7 (2011). doi: 10.1016/j.vaccine.2011.02.085. https://www.ncbi.nlm.nih.gov/pubmed/21397718
  • Zhao, Q. et al. In-depth process understanding of RECOMBIVAX HB® maturation and potential epitope improvements with redox treatment: multifaceted biochemical and immunochemical characterization. Vaccine. 29(45) 7936-41 (2011). doi: 10.1016/j.vaccine.2011.08.070. https://www.ncbi.nlm.nih.gov/pubmed/21871939

Small molecules and fragments

  • Huber, S. et al. SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands. PLoS One. 2017 12(5), e0175842 (2017). doi: 10.1371/journal.pone.0175842. https://www.ncbi.nlm.nih.gov/pubmed/28510609
  • FitzGerald EA, Vagrys D, Giulia Opassi, et al. Multiplexed experimental strategies for fragment library screening against challenging drug targets using SPR biosensors. SLAS DISCOVERY. 2023;29(1):40-51. doi:10.1016/j.slasd.2023.09.001
  • Huber S, Casagrande F, Hug MN, et al. SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands. Karnik SS, ed. PLOS ONE. 2017;12(5):e0175842. doi:10.1371/journal. pone.0175842
  • Li XP, Harijan RK, Cao B, et al. Synthesis and Structural Characterization of Ricin Inhibitors Targeting Ribosome Binding Using Fragment-Based Methods and Structure-Based Design. Journal of Medicinal Chemistry. 2021;64(20):15334-15348.
    doi:10.1021/acs.jmedchem.1c01370
  • Uitdehaag J.C.M. et al. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity. J Mol Biol. 429(14), (2017) https://www.ncbi.nlm.nih.gov/pubmed/28539250
  • Cramer, J. et al. Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin. ACS Chem Biol. 2017 12(1), 225-233 (2017). doi: 10.1021/acschembio.6b00979. https://www.ncbi.nlm.nih.gov/pubmed/27959500
  • Krimmer, S.G. et al. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands. J Med Chem. 2016 59(23), 10530-10548 (2016). doi: 10.1021/acs.jmedchem.6b00998. https://www.ncbi.nlm.nih.gov/pubmed/27933956
  • Heinrich, T. et al. Fragment-based discovery of new highly substituted 1H-pyrrolo[2,3-b]- and 3H-imidazolo[4,5-b]-pyridines as focal adhesion kinase inhibitors. J Med Chem. 56(3), 1160-70 (2013). doi: 10.1021/jm3016014. https://www.ncbi.nlm.nih.gov/pubmed/23294348
  • Danielson, U.H. Integrating surfaceplasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process. Future Med Chem. 1(8), 1399-414 (2009). doi: 10.4155/fmc.09.100. https://www.ncbi.nlm.nih.gov/pubmed/21426056
  • Andersson, K. and Hämäläinen, M. Replacing Affinity with Binding Kinetics in QSAR Studies Resolves Otherwise Confounded effects. Journal of Chemometrics 20, 1–6 (2006). http://onlinelibrary.wiley.com/doi/10.1002/cem.1010/full
  • Markgren, P.O. et al. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J Med Chem. 45(25), 5430-9 (2002). https://www.ncbi.nlm.nih.gov/pubmed/12459011
  • Willemsen-Seegers, N. et al. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance. J Mol Biol. 2017 429(4), 574–586 (2017). doi: 10.1016/j.jmb.2016.12.019.  https://www.ncbi.nlm.nih.gov/pubmed/28043854
  • Bonagas N, Gustafsson NMS, Henriksson M, et al. Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nature Cancer 2022;3(2):156-172.
    doi:10.1038/s43018-022-00331-y
  • Luttens A, Gullberg H, Abdurakhmanov E, et al. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society. 2022;144(7):2905-2920. doi:10.1021/jacs.1c08402
  • Zhukov A, Andrews SP, Errey JC, et al. Biophysical Mapping of the Adenosine A2A Receptor. Journal of Medicinal Chemistry.
    2011;54(13):4312-4323. doi:10.1021/jm2003798
  • Ogura T, Tanaka Y, Toyoda H. Whole cell-based surface plasmon resonance measurement to assess binding of anti-TNF agents to transmembrane target. Analytical Biochemistry. 2016;508:73-77. doi:10.1016/j.ab.2016.06.021
  • Lei, H. et al. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening. Bioorg Med Chem. 2016 24(4), 596-605 (2016). doi: 10.1016/j.bmc.2015.12.029. https://www.ncbi.nlm.nih.gov/pubmed/26740153
  • Jones, A.M. et al. A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms. Sci Rep. 6, 34701 (2016). doi: 10.1038/srep34701. https://www.ncbi.nlm.nih.gov/pubmed/27708405
  • Segala, E. et al. Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A(2A) receptor reconstituted in HDL like particles. FEBS Lett. 2015 589(13), 1399-405 (2015). doi: 10.1016/j.febslet.2015.04.030. https://www.ncbi.nlm.nih.gov/pubmed/25935416
  • Dahl, G. and Akerud, T. Pharmacokinetics and the drug-target residence time concept. Drug Discov Today. 2013 18(15-16), 697-707 (2013). doi: 10.1016/j.drudis.2013.02.010. https://www.ncbi.nlm.nih.gov/pubmed/23500610
  • Swinney, D.C. and Anthony, J. How were new medicines discovered? Nat Rev Drug Discov. 10(7), 507-19 (2011). doi: 10.1038/nrd3480.  https://www.ncbi.nlm.nih.gov/pubmed/21701501
  • Tummino, P.J. and Copeland, R.A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry. 47(20), 5481-92 (2008). doi: 10.1021/bi8002023. Erratum in: Biochemistry. 47(32), 8465 (2008). doi: 10.1021/bi8002023. https://www.ncbi.nlm.nih.gov/pubmed/18412369
  • Copeland, R.A. et al. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 5(9), 730-9 (2006). Erratum in: Nat Rev Drug Discov. 6(3), 249 (2007). doi: 10.1038/nrd2082. https://www.ncbi.nlm.nih.gov/pubmed/16888652
  • Swinney, D.C. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov. 3(9), 801-8 (2004). doi: 10.1038/nrd1500. https://www.ncbi.nlm.nih.gov/pubmed/15340390
  • Ana, Lemos AR, Busse P, et al. Extract2Chip—Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. Biosensors. 2023;13(10):913-913. doi:10.3390/bios13100913
  • He Y, Grether U, Taddio MF, et al. Multi-parameter optimization: Development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain. European Journal of Medicinal Chemistry. 2022;243:114750-114750. doi:10.1016/j.ejmech.2022.114750
  • Hochheiser IV, Pilsl M, Hagelueken G, et al. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature. 2022;604(7904):184-189. doi:10.1038/s41586-022-04467-w
  • Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597-601. doi:https://doi.org/10.1038/s41586- 021-03536-w5.
  • Arney JW, Weeks KM. RNA–Ligand Interactions Quantified by Surface Plasmon Resonance with Reference Subtraction. Biochemistry. 2022;61(15):1625-1632. doi:10.1021/acs. biochem.2c00177
  • Dietrich JD, Longenecker KL, Wilson NS, et al. Development of Orally Efficacious Allosteric Inhibitors of TNFα via Fragment-Based Drug Design. Journal of Medicinal Chemistry. 2020;64(1):417-429. doi:10.1021/acs.jmedchem.0c01280
  • Diya Lv, Xu J, Qi M, et al. A strategy of screening and binding analysis of bioactive components from traditional Chinese medicine based on surface plasmon resonance biosensor. Journal of Pharmaceutical Analysis. 2021;12(3):500-508. doi:10.1016/j.jpha.2021.11.006